L Band Service Compatibility Part I: Optimum OOBE Compatibility

Greenwood Telecommunications Consultants LLC

December 4, 2014 DOT ABC Meeting El Segundo, CA

Discussion

- Two Parts
 - Today we focus on optimum L Band ABC Out of Band Emission into GPS L1, OOBE.
 - Next ABC meeting will examine GPS-side mitigation of Adjacent Band Interference, ABI.
- Greater Compatibility: OOBE and ABI are distinct but parallel forms of interference
 - OOBE mitigation governed by transmitter's sideband emissions into GPS receive bands
 - ABI rejection governed by GPS receiver rejection of nearby lawfully operating signals
 - Parallel: Must solve, set OOBE and ABI rules together
- We start with the first compatibility factor, OOBE...
 - From any band, but special focus on L Band, Proposed ATC inside GEO-MSS uplink
 - Presented in our FCC Request for Comments filed September 2013
 - We find that ATC offers optimum level of compatibility at -105 dBW/MHz using competitive commercial components
 - We also examine compatibility criteria and compare MSS vs ATC uplink OOBE impact

OOBE & ABI Cross Parallel Paths...

Dense Compatibility Requires Acting on Both Receiving and Transmitting Entities to Reject Even a "Quiet" Neighbors' Undesired Signals

Object is to have Transceiver and GPS Receiver Harmlessly Operate One Meter Apart based on Standards

Difficult History to Coordinate Spectrum Compatibility Yet GPS & Broadband Have a Common, Growing Customer Base

- Diverse systems -- compatibility is the toughest
- GPS/LS controversy obviously well known
- However, disputes not new among different spectrum "neighbors"
- Sometimes its not always just adjacent neighbors
 - Uncontrolled OOBE may arise inside the same band
 - Examples:
 - Latest European Pseudolite proposals
 - Non-radiating device OOBE (e.g., Part 15)

Broadband & GPS Interaction compels a different analysis

- If LS terrestrial station downlinks now moved...
- And, AWS-3 auction again proving high value of mobile
- GPS, Broadband customers now extensively overlap
- So, no longer about one side's "spectrum trespassing"
- Its increasingly about satisfying customers who use both services, at the same time

Transmitter OOBE Compatibility Analysis GPS Receiver Impact Criterion: 1dB Degradation of C/No

Analysis:

- 1. Use 1m separation, which in part is based on a settled 3GPP standard
- 2. First test a single, then multiple device cases

	Determination of OOBE for 1dB loss in GPS C/No					
	GPS RX noise figure	2	dB			
	GPS Rx noise floor	-172	dBm/Hz			
Adds to receiver kTF noise	Power allowed for 1dB C/No loss	-178	dBm/Hz			
	Gain of GPS antenna (From TWG report)	-5	dBi			
N	Body blockage	2	dB			
3GPP standard separation	Free Space Path loss at 1 m (1575MHz)	36	dB			
	OOBE EIRP allowed at Tx	-135	dBm/Hz			
Resulting OOBE budget	OOBE EIRP allowed at Tx dBW/MHz	-105	dBW/MHz			
	Notoo					

Notes:

- 1. Assumes OOBE products within primary lobe of CA code, centered at 1575.42MHz
- 2. OOBE threshold impact measured at receiver LNA = -178dBm/Hz

3. 90% of cellular antennas tested gain < -5dBi over the hemisphere by the TWG

4. Precision antennas were also found to have -5dBi gain at the horizon b y the TWG

This analysis returns a single receiver OOBE value of -105 dBW/MHz. We examine feasibility to deliver this later based on commercially available mobile product components.

MSS versus ATC OOBE Protection Distance Single MSS/ATC Mobile Transmitter, Free Space Path Loss Between Devices for 1 dB C/No degradation

MSS versus ATC OOBE Protection Distance

Multiple mobile case*, User density and Minimum protection distance for 1 dB C/No degradation

- -70 dBW/MHz results unacceptable, yet part of current rules
- -95 dBW/MHz at d=5.2m for some use cases excessive
- -105 dBW/MHz at d=1.6m shows robust compatibility with surrounding devices
- * Notes:
- Assumes all mobiles transmit at the same time
- GPS interference harm criterion of -1dB C/No
- OOBE energy relates to products that falls within CA code main lobe centered at 1575.42MHz

OOBE Commercial Feasibility

Methodology

- Two possible analytical approaches
 - Determine OOBE by "Forward engineering" (Used by manufactures)
 - Start from known component performance, work toward an OOBE result or objective
 - Assumes known performance of all components and interactions, e.g. PA IM
 - Or, determine by "Reverse engineering"
 - Given an end-performance objective, work backward to determine margins between major component performance levels
 - Determine Tx OOBE based on derivations of component performance information

Basis of Mobile Components and Interactions

- Selected 3GPP Band 25 (PCS+G) to model low Tx to Rx duplex frequency pass band separation
- Use the commercial Avago Technologies ACMD 6125 duplex filter as a model
 - Similar technology Avago GPS/GNSS band pass filter (used commonly in cellular) production component simulation in FCC in LS ex parte proceeding showed similar rejection characteristics
 - Similar frequency separation, configuration to that proposed for LS NOAA DL/MSS ATC UPL
- Determine Tx noise floor by duplex filter attenuation
- Based on proposed ATC UPL transmitter operating between 1626.5-1660.5MHz
- Scale model duplexer response (BW) and with Tx noise determine GPS protection levels

Reverse Engineering-ATC Mobile Tx/Rx Duplex Filter Provides an Important Part of OOBE into GNSS Band

	Scenario	Value	Units	Comment
	Rx Noise figure	6	dB	Near Minimum
	Rx noise floor for 3GPP	-168	dBm/Hz	
	Noise rise	1	dB	
	Noise allowed from Tx 1dB deg	-174	dBm/Hz	6dB below noise floor
	Rejection from duplexer*	50	dB	Min Attenuation at +80MHz
	Noise from Tx allowed before filter	-124	dBm/Hz	
Ty	Noise from Tx allowed before filter	-64	dBm/MHz	
et	Noise from Tx allowed before filter	-94	dBW/MHz	

Only need 11dB attenuation to Tx noise at GNSS

Note: Lower Antenna gains and efficiency<100% will also reduce OOBE radiated * Minimum Rejection of 50dB at 15MHz separation based on similar design of PCS L Band Duplexer Reference commercially available Avago Technologies 6125 Duplexer datasheet

ATC Mobile OOBE Noise Estimation

Based on 3GPP Band 25 10MHz LTE Uplink

- AVAGO ACDM 6125 duplexer shifted to 1626.5MHz
- ACDM 6125 provides >50dB attenuation at equivalent GPS frequency of 1590 (-35MHz) more at 1575
 - 80 MHz Tx/Rx duplex separation based on 3GPP Band 25 for LTE ACLR to model sideband noise (OOBE) output
- OOBE dominated by PA IM and is symmetrical over $+/-\Delta f$
- OOBE of -105dBW/MHZ is reached at 1600MHz
- This is conservative since does not include additional handset antenna loss (negative gain)
 - Handset antenna will also have less gain at GPS than ATC uplink frequencies

Duplexer Passband Loss Trade-Off

Is there an Insertion loss penalty for ATC UPL Filters Protecting GPS?

- FBAR/BAW preferred or optimal technology between 1.5 to 3.5 GHz
- Filter pass band loss dependencies
 - Increases as BW ratio is reduced
 - IL \sim BW1/BW2
 - Increases as rejection/number of resonators increases
- Actual datasheet data:

Band	Filter	BW (MHz)	T to R band (MHz)	Tx IL typ (dB)	IL w/c +85C band edge	Reject at Rx (dB)
GPS	Avago LS July 2011	55	NA	1.25	<3	>50 at 1626.5
Band I	ACMD-7614	60	190	1.4	2.1	50
PCS+G	Avago ACMD 6125	64.5	15	1.2	4	50
PCS	Avago ACMD 6102	59	20		2.5	55
PCS	Avago ACMD- 7403	59	20	1.4	2.7	44
LTE III	Avago ACMD-6103	75	20	1.4	3.5	50

Conclusions:

- With separation of 15 MHz between pass and reject frequencies, typical insertion losses are virtually the same as wider BW and reject bands configurations
- Since GPS at least 35 MHz below 1626.5 MHz pass band, the Insertion loss factor is not an issue